
Statistical Testing for Comparing Machine Learning Algorithms

Li Yu
College of Information Science and Technology

Pennsylvania State University
Email: luy133@psu.edu

Szu-Chi Kuan
College of Information Science and Technology

Pennsylvania State University
Email: sbk5672@psu.edu

Abstract—There are many Machine Learning (ML) al-
gorithms for classification tasks today. How to compare
different algorithms and choose the best one becomes
important because people don’t want their choices to
be fooled by randomness or variation in comparisons.
Statistical testing serves as an effective and convincing
method to determine if observed difference between
two classification algorithms is statistically significant. In
this work we examine two hypothesis testing methods:
McNemar’s test and 5x2cv paired t test, and carry out
experiments with them on the wine dataset. Results
show that both tests are effective and there are different
scenarios that each one of them is suited for. McNemar’s
test can be used for comparing resource-consuming
algorithms such as deep learning models because it
only requires one run of training and testing. Whereas
5x2cv paired t test is slightly more stable and best
suited for comparing algorithms that are not resource
consuming, or for comparisons that need to be deliberate
and precise.

1. Introduction

1.1. Problem Statement

The development of machine learning algo-
rithms, especially deep learning has greatly im-
proved our capability to solve real-world classifi-
cation tasks. Researchers often face the situation
of having to select the best classifier from a pool
of candidates. This problem is nontrivial because
1) we have to determine how to compare the per-
formance of different algorithms and 2) make sure

that the difference in performance is statistically
significant.

For classification tasks, we have quite a few
performance evaluation metrics such as accuracy,
precision & recall1, F1 score2, and even auroc3.
Different evaluation metrics may lead to different
results in terms of which classifier is better and
the choice of evaluation metrics is highly task
specific. How to choose the right performance
evaluation strategy is beyond the scope of this
work. We will focus on the most common eval-
uation metric for classification: the accuracy or
the error rate. Accuracy is the ratio of correct
predictions of one classifier over all predictions
and error rate is just another way of putting it,
that is, the ratio of wrong predictions among all
predictions.

Now that the difference in performance can be
viewed as the extent to which classifiers disagree
from each other in making errors. It looks like
we just need to directly compare the error rate
of two classifiers to get to know which one is
better, which is what we commonly do in research
projects. This practice, however, can be problem-
atic. Take a simple binary classification task for
example. Suppose we have two classifiers A and
B, and train them on the same training dataset
and test on a testing dataset. In case 1 classifier

1. https://en.wikipedia.org/wiki/Precision and recall
2. https://en.wikipedia.org/wiki/F1 score
3. https://en.wikipedia.org/wiki/Receiver operating characteristic



A gets an error rate of 25%, whereas classifier B
gets an error rate of 15%. The difference in error
rate is big, so that we can almost confidentially
determine that B is better than A. However, in
the other case 2, the error rate of A is improved
and decreased to 17%, with the performance of
B staying unchanged. The difference in error rate
this time is relatively small that we may not yield
a conclusion confidentially. This is because the
difference between two algorithms can be very
small that it is hard to determine if the difference
is caused by the two algorithms themselves or just
by any randomness or variation in the way the
comparison is carried out.

In light of the above mentioned problems, we
would like to introduce statistical testing on the
comparison of two classification algorithms. We
conduct McNemar’s test and 5x2cv paired t test
on four different machine learning classification
algorithms on a small dataset and demonstrate the
effectiveness of both test methods. The time cost
of each test is also recorded to give a good sense
of suited scenarios to use one of the two tests.

1.2. Sources of Variation

To design and perform statistical tests, we first
need to figure out possible sources of variations
that must be controlled by each test. There are a
few sources we think are common and important.

The first source is the variation in data split of
train and test sets. In a typical classification task,
we split the dataset randomly into two sets, one for
training and one for testing. Due to the property
of random-draw, one algorithm may outperform
another even though the two algorithms do not
have any profound difference. This phenomenon
is especially obvious when the available dataset
is small. Small variations in the training data may
lead to big changes in the classifier produced by a
learning algorithm, as demonstrated as ”instabil-
ity” by Breiman [1].

The second source of variation is the random-
ness of weight initiation in some machine learning
algorithms, especially for those models in deep

learning. Depending on different weight initializa-
tion states, the same deep neural network may be
trained into classifiers with varied performances,
even on the same training dataset. Actually how to
best initialize a deep feed-forward neural network
is still a hot topic in the field of machine learning
and artificial intelligence [2].

The last but not the least source of variation is
the size of available training data. The amount of
data to train a good classifier is different depend-
ing on the learning algorithm. Usually deep learn-
ing classification models require far more training
data than classical machine learning algorithms,
and the deeper the neural network, the bigger the
training set size. If we start with a small dataset
and get to a conclusion that one algorithm is better
than the other, it doesn’t necessarily hold true
when the training data is increased and enhanced.

The aforementioned sources of variation are
not exclusive and in fact due to the limited time,
we are not going to examine every aspect of them.
We will instead focus on the design of statistic
testing methods, given a fixed dataset and already
well-initiated learning algorithms.

1.3. Hypothesis Testing

We are comparing two classifiers each time.
The hypothesis test will be performed at a signif-
icance level (α) of 0.05 and the null hypothesis
and alternative hypothesis can be formulated as
follows:

H0 : Two classifiers make errors

in the same way

Ha : Two classifiers make errors

differently

2. Method

2.1. McNemar’s test

Test for the difference of two proportions:
Before introducing McNemar’s test, we will first



introduce the test for the difference of two propor-
tions, because it is more intuitive and correlates
well with what we have learned in this course
on the comparison of two population proportions.
Basically, it is based on the test of difference
between the error rates of two classifiers [3]. The
assumption underlying this statistic test is that if
the error rate of one classifier A is pA, then the
possibility that A makes error is also pA. We have
thus got two proportions pA and pB on the test
set size n, and we can carry out the usual test on
the two population proportions. The test is quite
straight-forward and easy to perform because it
only needs one hold out test. It has a problem,
however, that the two proportions pA and pB are
actually not independent since they are evaluated
on the same test dataset. A better approach which
also needs only one hold out training and testing
is the McNemar’s test [4].

McNemar’s test: In the McNemar’s test, we
train both classifiers A and B on the same training
set and test on the same testing set, and record the
results and construct a contingency table:

TABLE 1. CONTINGENCY TABLE

B wrong B right
A wrong n00 n01

A right n10 n11

where n00 means the number of samples both A
and B predict correctly, and n01 means the number
of samples only B gets right, and so on for n10

and n11. Note n = n00 + n01 + n10 + n11 is the
total number of test samples.

McNemar’s test is based on a χ2 test that
compares the distribution of counts expected un-
der the null hypothesis. The following statistic is
computed and is proved to be distributed (approx-
imately) as χ2 with 1 degree of freedom:

(|n01 − n10| − 1)2

n01 + n10

If the null hypothesis is correct, then the probabil-
ity that this statistic is greater than χ2

1,0.95 = 3.841

is less than 0.05. We will reject the null hypothesis
H0 and conclude that the two classifiers A and B
make errors differently, if the p value is less than
0.05.

2.2. 5x2cv paired t test

Before introducing 5x2cv paired t test, we
would like to introduce resampled and k-fold cv
paired t test .

Resampled paired t test: A natural way to
circumvent the effect of randomness resulting
from only one train/test run as applied in the
McNemar’s test, is to randomly sample multiple
train/test data and evaluate the classifiers to get a
series of paired error rates. Paired t test then can
be performed to determine if the two sets of error
rates differ from each other, just like the inference
for two population means we have learned in this
course.

K-fold cross-validated (cv) paired t test: An-
other way to do paired t test is through a k-fold
cross validation. This time the train/test sets are
not randomly drawn from the dataset pool, but
rather the dataset pool is divided into k folds. Each
time one fold is taken as a test set and the rest
folds as a train set. It will result in k paired error
rates and we can perform a usual paired t test on
them.

Both the two paired t test methods have some
potential drawbacks. As demonstrated by Diet-
terich [5], they tend to elevate the probability
of Type I error, that is incorrectly reject null
hypothesis while in reality it cannot be rejected.
More specifically, the two methods tend to con-
clude classifiers to perform differently more often
than they actually have to do. The source of
the increased Type I error for resampled paired
t test method comes from two factors: 1) The
fact that train and test sets are randomly drawn
will inevitably lead to overlapping among different
training sets and also among testing sets, which
will reduce the variance and thus increase the t
statistic. That finally leads to a more frequent re-
jection of null hypothesis than expected. 2) Again



because of randomly drawing data, each train and
test sets are likely to contain an imbalance of
points from different classes, that makes it not
representative of the whole dataset. Dietterich has
experimentally demonstrated that paired t test can
detect and magnify this difference until it is ”sta-
tistically significant”, and in fact it is the major
reason of resulting in a high Type I error rate [5].
K-fold cv paired t test, on the other hand, greatly
reduces the occurrence of imbalance by managing
to use all the available data, in turn. The design
of cross validation also avoids overlapping among
different testing sets, with the only source of a
slightly high Type I error to be the overlapping
among different training sets. To deal with the
problem of overlapping in training sets, a new
approach is proposed by Dietterich: 5x2cv paired
t test.

5x2cv paired t test: In 5x2cv paired t test,
instead of a usual k-fold cv, the split is reduced
to 2-fold so that training sets would never overlap
in each run of cv. The procedure of 5x2cv paired
t test can be described in the following table:

TABLE 2. PROCEDURE OF EACH CV

Train Classifier Error Rate Difference

1st fold A P 1
A P 1 = P 1

A − P 1
BB P 1

B

2nd fold A P 2
A P 2 = P 2

A − P 2
BB P 2

B

In each run of cv, both classifiers A and B are
firstly trained on the 1st fold and tested on the
2nd fold to yield the error rates P 1

A and P 1
B. They

are then trained on the 2nd fold and tested on the
1st fold to yield P 2

A and P 2
B. Difference between

A and B are computed to get P 1 and P 2. The
variance of this run of cv is given as:

s2 = (p1 − p̄)2 + (p2 − p̄)2

where p̄ =
p1 + p2

2

Let s2i be the variance computed from the i-th run

of cv, and let p11 be the p1 from the first run of cv,
we compute the following statistic:

t̃ =
p11√

1
5

∑5
i=1 s

2
i

Under the null hypothesis, this t̃ statistic has ap-
proximately a t distribution, with 5 degrees of
freedom. We will reject the null hypothesis if
t̃ > t0.05,df or p value < 0.05, with df = 5.

3. Experiment

We implement the two test methods in Python
and conduct experiments using them on four
classifiers on the wine dataset. The source code
is designed to be easily extendable to various
datasets and pairs of classifiers, and is available at
https://github.com/liyu10000/algorithms testing.

3.1. Dataset

The dataset we use is about wine recogni-
tion data which is provided by the UCI Machine
Learning Repository4. These data are the results
of a chemical analysis of wines grown in the same
region in Italy but derived from three different
cultivars. Three types of wine are represented in
the 178 samples, with the results of 13 chemi-
cal analyses recorded for each sample. The data
contains no missing values and consists of only
numeric data, with a three class target variable
for classification. Table 3 shows the number of
instances in each class.

TABLE 3. NUMBER OF INSTANCES PER CLASS

Class Number of Instances
class 1 59
class 2 71
class 3 48

4. https://archive.ics.uci.edu/ml/datasets/Wine



3.2. Classifiers

The four classifiers are used as given in the
Python packages such as scikit-learn. Since the
purpose of this work is to examine the statistic
tests themselves, we do not tune the parameters
of classifiers intentionally. The process of finding
the best algorithm for this specific classification
task is for demonstrating the effectiveness of the
two tests. The four classifiers we choose are as
follows:

• XGBoost (XGB)5: It stands for eXtreme
Gradient Boosting, which is an implemen-
tation of Gradient Boosted decision trees.

• Random Forest (RF)6: It is a classification
algorithm consisting of many decisions
trees.

• Support Vector Machine (SVM)7: It is a
discriminative classifier formally defined
by a separating hyperplane.

• Logistic Regression (LR)8: It is a statis-
tical model that in its basic form uses a
logistic function to model a binary depen-
dent variable, although many more com-
plex extensions exist.

We can just view them as classifiers with sym-
bols XGB, RF, SVM, and LR, without losing the
explainability of this work.

3.3. Test Result & Discussion

We run the two tests on each pair of classifiers
and record the error rate, running time, testing re-
sult (whether or not to reject the null hypothesis).
The results are listed in the following tables.

Table 4 records the error rates of four classi-
fiers under two tests. Since the wine dataset size

5. https://xgboost.readthedocs.io/en/latest/python/python api.htm
l#module-xgboost.sklearn

6. https://scikit-learn.org/stable/modules/generated/sklearn.ensem
ble.RandomForestRegressor.html

7. https://scikit-learn.org/stable/modules/generated/sklearn.svm.S
VC.html

8. https://scikit-learn.org/stable/modules/generated/sklearn.linear
model.LogisticRegression.html

TABLE 4. ERROR RATE

Classifier McNemar 5x2cv
XGB 0.028 0.051

LR 0.028 0.059
RF 0.0 0.035

SVM 0.0 0.073

is small and there is only one train/test split in
the McNemar’s test, the error rates under it is not
very stable, whereas the error rates under 5x2cv
paired t test is much more stable because of the
cross validation. The error rates shown in the table
is from one run out of our multiple runs, but it
should be representative. If not with the results
of statistical testing, the conclusions we can draw
from the comparison of error rates are that: 1)
Under one-time train/test split, both RF and SVM
are the best classifiers. 2) Under 5 runs of 2-fold
cv, RF is the best classifier, with XGB the second
best, LR the third, and SVM the worst. We will see
how our conclusions can be changed with testing.

TABLE 5. TEST RESULT COMPARISON OF TWO TESTS

McNemar 5x2cv
XGB vs. LR False False
XGB vs. RF True False

XGB vs. SVM True False
LR vs. RF False False

LR vs. SVM False False
RF vs. SVM True True

Table 5 shows the testing results. The mark
’True’ means we can reject the null hypothesis,
that is, the two classifiers make errors differently.
The mark ’False’ means we fail to reject the
null hypothesis and two classifiers make errors in
the same way. Loosely speaking, the True mark
indicates that two classifiers are different, and we
can infer which one is better with the help of error
rates. From table 5, it is interesting to find that
although error rates suggest RF and SVM to be the



same (make zero errors actually), McNemar’s test
still suggests they are different. It is weird because
two perfect classifiers can hardly be different!
After we check the implementation, we find out
that it makes no sense to compare n01 and n10

when they are too small, which partly explains
why we get weird result. Apart from that, we
get the test result of XGB vs. LR to be ’False’,
suggesting they are the same at making errors,
which agrees well with their error rates.

Different from McNemar’s test, the 5x2cv
paired t test gives more convincing results. It
can be seen from the table that only the pair
RF vs. SVM gets a ’True’ mark which means
that they are different. It is contradictory to our
observation from the table of error rates, where all
four classifiers are different. Now that if we define
the best classifier to be the one such that all others
are no better than it, we can safely conclude that
RF is the best classifier. On the other hand, we can
never reach any conclusions about the other three
classifiers. They are the same according to the test,
even though they have different error rates.

TABLE 6. TIME COST COMPARISON OF TWO TESTS

Time(/s) McNemar 5x2cv
XGB vs. LR 0.067 0.339
XGB vs. RF 0.500 3.608

XGB vs. SVM 0.570 1.621
LR vs. RF 0.454 3.290

LR vs. SVM 0.569 1.298
RF vs. SVM 0.884 4.894

We also record the time cost for the two test
methods under each pair of classifiers, in the hope
to prove that the time complexity is different. The
results are shown in Table 6, with all values in
seconds. It is clear that regardless of which pair
we run, McNemar’s test is always substantially
faster than the 5x2cv paired t test. The result is
expected because of the design of two methods.
Even though the longest time is no more than 5
seconds in our experiment, it is worth noting that
the time cost difference could be enlarged in some

situations when we have a huge amount of data
to work on and a big model like the ones in deep
learning. In this case, we have to carefully evaluate
which method to use and usually we can only rely
on the McNemar’s test, since the other one is too
resource consuming.

4. Conclusion

In conclusion, we have studied two statistical
testing methods for comparing the performance
of machine learning classifiers. We implement the
methods and test them on four different classifiers,
on the wine dataset. The results show that both
the McNemar’s test and 5x2cv paired t test are
effective in determining if the observed difference
in performance is statistically significant, with the
later test method to be more stable and convincing.
We also record and compare the time cost of two
methods, and find that McNemar’s test is suit-
able for situations that running multiple train/test
rounds are expensive, whereas the 5x2cv paired t
test is best for the situations that multiple train/test
runs are allowed and more stable comparisons are
expected.
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